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13. 

The reflection and scattering properties of an inhomogeneous poroelastic medium were studied 
via numerical simulation. The inhomogeneous medium was modeled as an ensemble average of 
randomly layered poroelastic material. Each layer represented a granular material of a particular 
grain size. The thickness of each layer was related to the associated grain size and porosity by a 
conservation of mass relationship. Lateral variations in grain size were approximated by 
performing a coherent ensemble average of results from several realizations of the randomly 
stratified medium. Poroelastic medium parameters were chosen to represent water-saturated 
sand. The mean and standard deviation of the grain size distribution were chosen to match 
existing experimental data so that the model could be tested. Specifically, the inhomogeneous 
medium was modeled as bounded by a homogeneous water half-space on the source side, and a 
homogeneous poroelastic half-space of equivalent average porosity on the other side. Reflected 
signals were computed for 500 kHz and 1 MHz normally incident plane waves. Coherent and 
random components of the reflected signal were calculated. The coherent part was directly 
related to the reflection coefficient. The random component was related to the scattering strength 
of the medium. It was found to increase with the mean grain size diameter, consistent with 
previous experimental results. 
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PREFACE 

This is the final report on work that Applied Research Laboratories, The 
University of Texas at Austin (ARLUT), was tasked to perform under Grant 
N00014-94-1-0438, entitled "Multiple Scatter Theory of Ocean Sediments." 
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1.  OBJECTIVE 

The goal of this study is to investigate the extent to which sediment 
granularity can account for the attenuation and scattering that has been 
observed in ocean sediments, particularly water-saturated sand. Typically, a 
couple of devices are employed to match theory to experimental measurements 
of attenuation and scattering; the attenuation is accounted for in terms of a 
complex bulk modulus, and the scattering is modeled as a random field of point 
scatterers, in which the scattering strength is adjusted to match the measured 
data. Both devices have very little physical basis. Our hypothesis is that both 
attenuation and scattering might be explained in terms of acoustic interaction 
with the sediment grains. The viscoelastic theory of acoustic propagation in a 
solid is not a suitable starting point since it does not possess a mechanism that 
can account for the interaction between pore fluid and solid particles. Our 
starting point is Biot's theory of acoustic propagation in a poroelastic medium. It 
contains the basic mechanisms of acoustic interaction between the solid matrix 
and pore liquid as far as forward propagation is concerned, but it does not have 
any mechanism to account for scattering and any associated losses due to 
granularity. Our intention is to extend Biot's theory to include the effects of 
granularity. In this initial study, we will use a brute force, numerical simulation 
approach to obtain results quickly. The results of this initial study were 
compared with experimental data to test the feasibility of our hypothesis. The 
comparison, as it turned out, was very encouraging, and provides a solid 
foundation for proceeding to the next phase of the investigation, which will be 
directed towards obtaining analytical relationships. 
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2.     INTRODUCTION 

Current models of acoustic bottom backscatter from sandy sediments are 
based on composite roughness and volume scattering effects from sediments 
modeled as fluids.1"3 However, recent bottom penetration experiments by 
Chotiros4"6 have shown that Biot's theory,7,8 based on the propagation of 
sound through a fluid-filled porous solid matrix, better explains the conduction 
of acoustic energy into the sediment. This conduction process is an important 
factor in any model of scattering by sediment volume, making it plausible to 
apply Biot's theory to sediment scattering. Biot's theory predicts acoustic 
propagation through a poroelastic medium as a coupled wave motion within the 
solid and the pore fluid. The medium is modeled as a solid with tubular pores, 
as illustrated in Fig. 2.1. The propagating wave, in the direction of the pore 
tubes, can be decomposed into three components -- a fast and a slow 
compression wave, and a shear wave. The equations of motion, in a form used 
by Stern, Bedford, and Millwater9 (correcting for typographical errors), are 

^V2u + (#-/*)V(V-u) -CV(V-w)   =  pü-pfw      ,        (2.1) 

CV(V-u)-MV(V-w)   =   P/ü--^-w-^w       , (2.2) 
ß K 

where u is the displacement vector of the solid frame, w is the negative porosity 
times the displacement vector of the pore fluid relative to the solid frame, ß is 
the porosity of the solid frame, pf is the mass density of the pore fluid, p is the 
mass density of the saturated sediment, \i is the shear modulus of the solid 
frame, c is the virtual mass coefficient of fluid motion, 77 is the viscosity of the 
fluid, and K is the permeability of the solid frame. C, H, and M are constitutive 
coefficients depending on ß, \i, and the bulk moduli of the pore fluid, grain 

material, and the saturated sediment. F is a frequency-dependent dynamic 
correction term describing the frictional force due to the relative motion of the 
solid and fluid, as given by Biot.7,8 The relationships between the parameters 
of Eqs. (2.1) and (2.2) are given in1 Appendix A. In order to match the calculated 
acoustic wave attenuations to measured values, imaginary terms must be 
added to the frame bulk and shear moduli. Furthermore, the theory has no 
mechanism for scattering because the pores are modeled as parallel smooth 
walled tubes that are perfectly aligned with the direction of wave propagation. 
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Figure 2.1 
Illustration of Biot's theory of acoustic propagation 

through a poroelastic medium. 
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When u and w are written in terms of vector and scalar potentials, the 
above two equations separate into four coupled vector partial differential 
equations. For homogeneous media, the vector and scalar potentials have 
plane wave solutions. At a fluid/poroelastic interface, there are four boundary 
conditions imposed on these solutions -- continuity of fluid pressure, continuity 
of shear traction, continuity of normal traction, and continuity of normal fluid 
displacement. At a poroelastic/poroelastic interface there are two additional 
boundary conditions -- continuity of tangential solid displacement and continuity 
of normal solid displacement. The mathematical formulation of the differential 
equations and boundary conditions governing the vector and scalar potentials 
are clearly illustrated by Stern, Bedford, and Millwater,9 and are outlined in 
Appendix A. 
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3.   MODEL 

We now present a multiple scatter model of the ocean sediment. In this 
model, the ocean sediment is represented as a finite granular medium bounded 
above by a homogeneous fluid half-space (water) and below by a 
homogeneous poroelastic half-space. The poroelastic half-space has 
properties given in Table 3.1, which were recently determined by Chotiros for 
sound propagating through water-saturated sand. Likewise, the fluid half-space 
has properties denoted by the fluid properties in Table 3.1. Before continuing, 
the terms "granular" and "poroelastic" need some clarification. In the context of 
this study, the term "poroelastic" refers to a medium that follows Biot's theory of 
acoustic propagation as described by Eqs. (3.1) and (3.2), in which the pores 
are modeled as parallel tubes as described in Fig. 2.1. The term "granular" 
refers to a poroelastic medium that is consistent with Biot's theory, and which, in 
addition, the pore diameter may vary, thus giving rise to scattering mechanisms 
associated with the granularity. 

A randomly packed granular medium, such as the ocean sediment, is 
essentially a three-dimensional medium that will reflect, transmit and, most 
importantly, scatter an incident acoustic wave. Ideally, a fully three-dimensional 
mathematical model is required, but it would be very expensive to develop and 
compute. However, it is noted that the inhomogeneities in ocean sediments, 
particularly sand beds, are structured as horizontal lenses, as illustrated in 
Fig. 3.1(a). We have chosen to model the lenses as an ensemble of random, 
horizontally layered, poroelastic media, as illustrated in Fig. 3.1(b), whose 
acoustical response, when summed, will approximate that of a fully three- 
dimensional model. This model ignores the edge effects at the periphery of the 
lenses, which are expected to be small. The approach is attractive because a 
horizontally layered medium, being essentially a one-dimensional problem, is 
quite simple to compute, as shown in Appendix B. Even an ensemble of 
several random realizations is still quite economical computationally. 

Each realization of a randomly layered poroelastic medium consists of a 
series of poroelastic layers of differing properties, sandwiched between an 
upper fluid half-space and a lower uniform poroelastic half-space, as illustrated 
in Fig. 3.2. Within the randomly layered medium, the i& layer corresponds to 



Table 3.1 
Material properties of the homogeneous Biot half-space. 

Fluid viscosity (77) 1.00x10-3kg/m-s 

Fluid mass density (p/) 1000 kg/m3 

Fluid bulk modulus (Kf) 2.25x109Pa 

Grain mass density (pg) 2650 kg/m3 

Grain bulk modulus {Kr) 7.00x109Pa 

Frame shear modulus (ßo) 2.61 x107Pa 

Frame bulk modulus (Ki,0) 5.30x109 Pa 

Frame porosity (j3) 0.36 
Frame shear log decrement (<5S) 0.15 
Frame bulk log decrement (S) 0.15 

8 



Random scattered field 

Incident plane wave 

(a) Random scattering of a plane wave from a 3-D granular structure. 

Plane wave responses 
from random realizations 

Incident plane wave 

(b) Summation of scattered signals from ensemble of 1-D structures. 

Figure 3.1 
Simulation of plane wave scattering from a 3-D 

granular structure with an ensemble of 1-D structures. 
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pores of 
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constant diameter 
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Figure 3.2 
A randomly layered Biot medium, bounded above by a 

homogeneous fluid half-space and below by a 
homogeneous Biot half-space. 
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a mono-layer of granular material of uniform, but randomly chosen, grain 
diameter, a,. For a given grain size, greater layer thickness implies greater fluid 
volume within the layer, and hence greater porosity for the layer. Therefore, a 
certain correlation between the thickness h\ and porosity ß, of the i& layer within 

the granular medium is postulated. The layer porosity is simply the ratio of the 
fluid volume to the total volume of the layer. 

ß,  =   hiZSb.  =   i_|i       . (3.1) 
hi hi 

The average layer thickness is chosen so that average porosity of the 
granular medium is the same as that of the homogeneous poroelastic half- 
space, as given in Table 3.1. 

The properties that are dependent on porosity and grain diameter are 
computed according to the method described by Chotiros.5 Other material 
properties of each layer within the granular medium match those of the 
homogeneous Biot half-space. Further details are given in Appendix A. Of 
particular significance, within the randomly layered poroelastic medium, the log 
decrements are set to zero (i.e., the imaginary parts of the bulk and shear 
moduli are set to zero), in the expectation that the acoustic interactions with the 
pore size variations will provide the necessary loss and scattering mechanism 
that will properly account for the experimentally observed attenuation and 
scattering phenomena. 

11 



This page intentionally left blank. 

12 



4.     SIMULATION  PROCEDURE 

The purpose of this simulation was to verify the feasibility of the model 
described above by comparing the model predictions of reflection loss and 
scattering strength with experimental data. The simulation parameters were 
chosen to allow comparison of the results with the experimental work of Nolle 
and Mifsud,11 who made measurements at 500 kHz and 1 MHz. The mean and 
standard deviations of the grain sizes of the sand samples used in their 
experiments are shown in Table 4.1. For simplicity, only the case of normal 

incidence was considered. 

It was assumed that the grain size distribution is a log-normal function. 
Hence, the distribution is completely specified by two free parameters, its mean 
and standard deviations. For simulation purposes, a number of mean grain 
sizes between 120 u.m and 640 |im were chosen. The dimensionless standard 

deviation was then determined by linear interpolation of the corresponding 

experimental values in Table 4.1. 

Table 4.1 
The mean and dimensionless standard deviations for the grain size 
distributions of the granular medium.   (The dimensionless standard 

deviations for intermediate grain diameters are determined by 
linear interpolation.) 

Mean  diameter 
(urn) 

Dimensionless standard 
deviation 

120 

170 
400 
640 

0.28 

0.17 

0.15 

0.11 

In the absence of any further information, the dimensionless layer 
thickness was arbitrarily chosen to have the same statistical distribution as the 
grain size, but the grain size and layer thickness were treated as independent 
variables. The mean of the thickness distribution was chosen so that the mean 
porosity of a many-layered sediment, as determined from Eq. (4.1), was the 

same as that of the homogeneous poroelastic half-space, i.e., 0.36.   Thus, 

13 
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Figure 4.1 
An example showing the variation of the reflection amplitude with 

the total sediment thickness (mean grain diameter = 120 |im). 
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(s)-1-* 36   =   0.64       . (4.1) 

Given the grain size and layer thickness distributions, the layered Biot 
medium was generated layer by layer. The grain size and thickness of each 
layer were independently chosen at random, consistent with the given 
distribution functions. The reflection loss was computed as a function of the 
number of layers, using the procedure given in Appendix A. One realization of 
such a plot is shown in Fig. 4.1. When the number of layers was small, the 
reflection amplitude varied wildly with the addition of each new layer. As the 
number of layers increased, the amplitude of the reflected signal appeared to 
converge about a mean value. 

To account for lateral variations in a realistic sandy sediment, the 
reflected signal was computed from an ensemble of random realizations of the 
same grain size and layer thickness distributions. The ensemble average of the 
reflected signal was used to compute the reflection coefficient. It was implicitly 
assumed that there is no correlation between the lateral depth profile variations. 
Typically, 25 random realizations were generated for each grain size 
distribution. The reflection coefficient was calculated from the mean value of the 
complex reflected signal, i.e., its coherent component, as given by \\<R>\\2. The 
scattering strength was calculated from the variation in reflected amplitudes, i.e., 
the random component, as given by 

S   =   101og((|*-<*>|2})   =   miog((j\Rf)-\\(R)f)       . (4.2) 

Due to the one-dimensional nature of these simulations, the scattered 
energy was all directed back to the source of the incident wave. But, 
experimentally, the measured scattering at a water-sediment interface is a 
three-dimensional process in which energy is scattered within a hemispherical 
sector of 2rc steradians. To compensate for this inherent discrepancy, the 

simulated scattering strength was offset by a precalculated amount that 
depends on the incident frequency. The details of this calculation are given in 
Appendix C. 

15 
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5.    RESULTS 

5.1 REFLECTION   LOSS 

As illustrated in Fig. 4.1, the norm of the reflection amplitude varied about 
a mean value as the number of layers in the sediment increased. The values 
were averaged over 575 realizations of the granular sediment. The result was 
estimated to be 0.268, equivalent to -11.4 dB, which is in good agreement with 
the measured value by Nolle10 and Mifsud11 of -11 dB. No significant 
deviations from this value were observed between the frequencies or grain 
sizes used in this study. 

5.2 SCATTERING   STRENGTH 

For incident wave frequencies of both 500 kHz and 1 MHz, scattering 
strengths were calculated for mean grain diameters ranging from 120 |im to 
640 u.m. The results are shown superimposed on the experimental data of 
Nolle in Figs. 5.1 and 5.2. 

At 500 kHz, the calculated scattering strength at normal incidence as a 
function of grain size was in good agreement with the experimental data for 
mean grain diameters up to about 530 u.m. Beyond this, the calculated 

scattering strength dropped sharply below the experimental values. At the point 
of divergence, the wavelength of the Biot fast wave was 6.4 mean grain 
diameters, or about four mean layer thicknesses. This indicates that our model 
is only valid for grain sizes significantly less than the acoustic wavelength within 
the sediment. 

At 1 MHz, the calculated scattering strength was only in agreement with 
the experimental data for mean grain diameters up to about 210 u.m. At this 
point of divergence, the wavelength of the Biot fast wave was 8.0 mean grain 
diameters, or about five mean layer thicknesses. Although these results are 
consistent with the previous interpretation that the model is valid for grain sizes 
significantly less than the acoustic wavelength, the range of experimental data 
points below 210 u.m was too small to establish a legitimate trend. 

17 
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Figure 5.1 
Calculated backscattering strength as a function of mean grain 
diameter at 500 kHz compared with Nolle's experimental data. 
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Figure 5.2 
Calculated backscattering strength as a function of mean grain 

diameter at 1 MHz compared with Nolle's experimental data. 
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6.     CONCLUSIONS 

The effects of granularity have been added to a Biot model of ocean 
sediments in a numerical simulation by introducing homogeneous layers of 
random thicknesses on the order of a grain diameter, in which the mean 
porosity is preserved. Within each layer, conservation of grain volume dictates 
a linear relationship between the layer thickness, porosity, and grain diameter. 

Lateral variations in sediment structure were simulated by coherently 
averaging the results for several random realizations of a layered poroelastic 
medium with given grain size and layer thickness distributions. The reflection 
loss predicted by this model was computed from the coherent component of the 
ensemble average of the reflected signal, and it was found to be in good 
agreement with measured values by Nolle. The scattering strength was 
computed from the random component of the reflected signal, and its values 
were found to be in agreement with experimental data for mean grain sizes 
significantly less than the acoustic wavelength within the sediment. However, 
the simulated scattering strength dropped sharply below the observed values 
for grain sizes near or greater than the acoustic wavelength. This indicates that 
the model is only valid for incident waves that yield acoustic wavelengths near 
or greater than ten times the mean grain diameter of the sediment. 

The approach that we have taken is based on sound physical principles. 
It is a significant extension of Biot's theory of acoustic propagation in porous 
media, and gives an insight to the processes that give rise to reflection and 
scattering from a granular medium such as water saturated sand, that is directly 
applicable to ocean sediments. The above agreement between model 
predictions and experimental measurement indicates that the approach is 
feasible. Follow-on work will include computation of wave attenuation due to 
granularity, which would involve calculation of transmission coefficients through 
the granular material. Then, we will attempt to derive an analytical model, based 
on our understanding of the numerical simulation results. 

21 
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Most of the equations used are the same as those given by Stern, 
Bedford, and Millwater.9 There are a few typographical errors in the equations 
from this reference, which have been corrected. The corrected equations in this 
appendix are Eqs. (A.5), (A.6), (A.29), (A.45), and (A.46). 

The ocean sediment is represented as a finite granular medium bounded 
above by a homogeneous fluid half-space (water) and below by a 
homogeneous Biot half-space. The granular medium is composed of 
homogeneous Biot layers of differing properties and thicknesses, as depicted in 
Fig. 3.2. 

The layers of the finite granular medium are numbered 1 to N, from top to 
bottom. The homogeneous Biot half-space is layer number N + 1, and the fluid 
medium is number 0. All N + 1 Biot layers have identical values for the fluid 
viscosity (77), fluid mass density (pf), fluid bulk modulus (K>), grain mass density 
(pg), grain bulk modulus {Kr), frame shear modulus (ß0), and frame bulk 
modulus (K/,0). The fluid medium has the same fluid mass density (pf) and fluid 
bulk modulus (K/) as the Biot media. These values are given in Table 3.1. 

The itb- layer of the granular medium corresponds to a mono-layer of 
granular material of uniform, but randomly chosen, grain size, a/. The choice of 
a grain size distribution is the sole free parameter for generating a granular 
sediment of given total thickness. 

In this model there is a correlation between the thickness h-, and porosity 
ßi of the i& layer within the granular medium. Each layer represents a mono- 

layer of granular material of uniform grain size. So, for a given grain size, 
greater layer thickness implies greater fluid volume within the layer, and hence 
greater porosity for the layer. For a given grain size distribution, the 
dimensionless layer thickness distribution is identical to that of the grain size 
distribution. The mean of the layer thickness distribution is chosen so that 
average porosity of a many-layered granular medium would be the same as for 
the homogeneous Biot half-space, ßn+i- The porosity of the i^ layer is simply 

the ratio of the fluid volume to the total volume of the layer. Due to the 
effectively one-dimensional character of the simulations in this present study, 

27 



we choose 
tfi 

ß. =  i    - 1 = 1,2,...,^, 
Hi 

ßN + 1   =   0.36. 

(A.1) 

(A.2) 

The skeletal frame's bulk and shear logarithmic decrements are set 
equal to zero for the first N layers, and set equal to 0.15 for the final semi- 

infinite layer. 

Si  =   ösi  =  0, / = 1,2,..., N    , 

SN + 1     
=     SsN+l    -     0.15 , 

Ku  —   K, fcO 1 -i 
.s: 
K, 

(A.3) 

(A.4) 

(A.5) 

\ii   -   ßo 1 -i 
.Ssi 

K 
(A.6) 

The mass density of the saturated sediment is simply 

Pi  =   (1 - ß,)p, + ßipf (A.7) 

The constitutive coefficients given in Eqs. (2.1) and (2.2) are 

Mi   = 
Kr 

i _ En + ßJEi _ i 
Kr 

H  U/ . 

d   =   \l-^\Mi 

Hi   =   [1-^1^ + ^+1^ 

(A.8) 

(A.9) 

(A. 10) 
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A plane wave of angular frequency m is incident upon this sediment 
configuration from above with grazing angle 0. The component of the wave 

number parallel to the fluid/sediment interface is 

k   =   u)Apcos(0)    , (A.11) 

where pf and Kf are the fluid mass density and fluid bulk modulus, as given in 
Table 2.1. The simulations of the present study concern the effectively one- 
dimensional case of normal incidence, with k = 0. 

For the ito layer, the virtual mass coefficient, c, and the permeability, K, of 
Eq. (2.2) are given by 

ct   =   1 + 0.5^-      , (A.12) 
Hi 

and 

K,   =   &&-     , (A.13) 
20 v      ' 

where p-, is the pore size parameter, given by 

P,   =   J^ßY   ' = 1.2.3,...,^    . (A.14) 

p- - ira • (A-15) 

and (a) is the mean of the grain size distribution. 

The dynamic correction term F, of Eq. (2.2) depends on the incident 
frequency. For the ifo layer, it can be written as 
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Fi   = wa> 
1 - 

(A. 16) 

where 

T(Zd  = 
ber'(£) + /bei'(£) 
ber(|i) + /bei(^) 

(A. 17) 

and 

&  =  Pi- 
cup/ 

V 
(A. 18) 

The horizontal position coordinate is denoted by x. The vertical position 
coordinate increases downward, and for the jit layer is denoted by z,. At the 
upper boundary of the ito Biot layer, z,= 0. The first vertical coordinate z0 within 
the fluid medium is set equal to zero at the fluid/sediment interface. 

The solid displacement term u and the relative solid/fluid displacement 
term w, from Eqs. (2.1) and (2.2), can be expressed in terms of scalar and 
vector potentials: 

u   =   V(3>, + Vx¥s     , (A. 19) 

w   =   V^ + VxWf (A.20) 

The scalar and vector potentials for the Ptb. layer can be written as 

**   =  *M* ,i(kx - <ot) 

%      =      *,(*,)* 
i(kx - mt) 

V«   =   ¥M)e' i(kx - cot) 

vfi = vA)' ti(kx - mt) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 
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Inserting these into Biot's equations of motion, Eqs. (2.1) and (2.2), yields a set 
of four coupled equations for <p and yr. 

f + v5 t* ~ C <!>r>   = 0 ,                              (A.25) 

ff,+X2fi<l>fi ~ AJ^   = 0 ,                              (A.26) 

fä+&¥ä   =   0 - (A.27) 

Vß   =   YiVsi     . (A.28) 

where 

a,   =  /^     , (A.29) 
K 

Pi   =   C~Y      - (A.30) 

Yi   =   ^       , (A.31) 
p.ö)  + a,. 

d,.   =   M,//,. - C2      , (A.32) 

<   =   V .       /; to2       , (A.33) 

4 
*}   =   V     ' ,    ' /; a)2     , (A.34) 

Ä   =   klllEA rf     , (A.35) 
A*,- 

(M,p7 - C,A)    2 
Ki   =   " ^ L O)2      , (A.36) 

d-. 
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*1 
(H,p, - ClPl) ^ 37) 

Xfi I   =   rf -e+Z^-      , (A.38) 
rfi 

r2   =   x2- - £&     , (A.39) 

v2   =   la-*2      , (A.40) 

e = ft-*2 ■ (A-
41

) 

The solutions to Eqs. (A.25) - (A.27) are plane waves of the form 

**(*,)   =   4,^ + Kjhli + A*«^" + B-ä^"     • (A-42) 

*/*,)   =   8UA+Sie
il»» + M-«""*' + $,4^* + 82iB_sie-u^    , (A.43) 

V„(0   =   C^«""* + C_^-'-z'      , (A.44) 

where 

«   =   £(*} + vl) ~ $(zl-tf + %a      ■ (A-45) 

6   =   |fe + v^) + ^-^)2+AjS       . (A.46) 

v2 - /2 

<5W   =   ^y^     , (A.47) 

««   =   ^pA      • (A-48) 
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The terms /*/, /2/, and /s/ are the wave numbers of the Biot fast, slow, and shear 

waves within the i& layer, respectively. The u+u and "-" coefficients are the 
amplitudes of the downward-moving (transmitted) waves and the upward- 
moving (reflected) waves within the i& layer, respectively. 

Let R be the reflection amplitude of the wave within the fluid medium. 
The unknowns of the problem are /?, and the As, Bs, and Cs of 
Eqs. (A.42) - (A.44). Since there are no reflections within the homogeneous 
semi-infinite Biot medium, we have 

^iW+1   =   B_sN+1   =   C_sN+l   =   0.     . (A.49) 

Thus, there are a total of 6/V + 4 unknowns, which satisfy the 6/V + 4 linear 
algebraic equations generated by the boundary conditions. 

The boundary conditions pertain to continuity of fluid pressure, traction, 
fluid displacement, and solid displacement. Within the Biot media, the fluid 
(pore) pressure is 

Pi   =  [Mt(ffi - k
2 <pfi) - C,(fä - e &,)] J»' ~ •", / = 1,2,.... jv + 1    ,  (A.50) 

and within the fluid medium it is 

p0   =   pfco2{\ + R)ei(kx-m)     . (A.51) 

The shear traction within the Biot media is given by 

(°iL   =   ttfcttri, ~ (Yä+Pyr*)]^'-*», i = l,2,...,N + l     ,     (A.52) 

and within the fluid medium it is 

(°i)„   =   0    • (A.53) 

The normal traction is 
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- C, (ffi - k
2 *,)] ei(kx -m\      i = 1,2,.... N +1,    . (A.54) 

«U.   =   -Po   =   -p^l + Ä)^-«»      . (A.55) 

and the normal fluid displacement is given by 

GO* " «,   =   Wsi + U Yä) - Wfi + ik VÄ eKk" ' ffl°'      i (A.56) 

; = U,...,/v+i, 

(«b), -(Vo),   =   W - Ä) tan(Ö) ^" *°      • (A-57) 

Finally, within the ifo Biot medium, the normal solid displacement is given by 

GO,   =   ^+ikYsi)eUkx-m)      , (A.58) 

and the tangential solid displacement is 

GO,   =   Wä-n)'"'-•»    ■ (A-59) 

Neither of these last two quantities have counterparts within the fluid medium. 

With h0 = 0, all N + 1 interfaces are subject to the boundary conditions 

«*)-U   =   <*MUH-^ ^ = U,...,iV + l    , (A.61) 

«*)«U   =   (ffH)-L^' / = l,2,...,iV + l     , (A.62) 

[GO. -«l-o   =   [(".-.),-(^-i)zl _A  .   Z = 1.2,...,tf + 1    ,       (A.63) 

f = l,2,...,JV + l     , (A.60) 
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and the Biot/Biot interfaces are subject to the additional two boundary 
conditions given by 

(".U,=o   =   <«U).L-«n' i = 2,3,...,N + l     , (A.64) 

OOjI(_o   =   (^-i)J,H =/,.,,' i = 2,3,...,tf + l    . (A.65) 

The transmitted and reflected fast, slow, and shear wave amplitudes within each 
medium are determined by substituting Eqs. (A.42), (A.43), (A.44), and (A.49) 
into the above six boundary conditions and solving the resulting set of linear 
algebraic equations for R, and the As, Bs, and Cs. 
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APPENDIX  B 
REDUCING  THE  COMPUTATIONAL   COMPLEXITY 

OF THE PROBLEM 
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PREVIEW 

In the process of this investigation, a method was discovered that 
dramatically simplifies the computational complexity of the problem described in 
Appendix A. Prior to this discovery, an AMayer problem required solving a 
(6/V+4)x(6/v+4) banded matrix equation. Problems with several hundred layers 
would require a few hours to run on a Sun 2000. With the new simplifications a 
500-layer calculation can now be performed in just over 6 minutes. This leap in 
computational efficiency was made possible by reducing the problem to a 4x4 
matrix calculation: 

(MIPSNC)x   =   b     , (B.1) 

where the 4x4 matrix (M I PSNC) consists of a 4x1 matrix M, which depends 
solely on the properties of the fluid half-space overlayer, augmented with a 4x3 
matrix PSNC, which is the product of three matrices: 

(1) a 4x6 prefix matrix P that is independent of fluid, sediment, or 
semi-infinite Biot layer properties, 

(2) a 6x6 matrix SN that depends solely on the /V-layered sediment 
properties, 

(3) a 6x3 matrix C that depends solely on the semi-infinite Biot 
layer properties. 

The 4-vector x contains the solution for the reflection coefficient and the three 
transmission coefficients for the Biot fast, slow, and shear waves through the N 
sediment layers. The 4-vector b depends solely on the properties of the fluid 
overlayer. 

The sediment matrix SN contains all the layered sediment information, 
and has the following simple form: 

SN   =   L1L2L3...LN    , (B.2) 
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where the 6x6 matrix Ls depends solely on the properties of the ß sediment 
layer. And Lj, in turn, can be written as 

L,   =   B.D^Br1 (B.3) 

where the 6x6 matrix Bj depends solely on the material properties of the ß Biot 
sediment layer and Dj is a diagonal 6x6 matrix depending on both the material 

properties and the thickness of the ß- layer. All the layer thickness information 
is contained in the D/s. 

METHOD 

Given the definition of the reflection and transmission coefficients for the 
ß- layer, as displayed in Eqs. (A.42) - (A.44), we define the vectors Vj by 

v,   = 

(A .\ 

4* 
B-si 

\CsiJ 

i = l,2,3,...,N (B.4) 

rN+l B+sN+l (B.5) 

The values of Vj and Vj+i are related by the boundary conditions supplied in 
Eqs. (A.60) - (A.65). These equations can be recast in matrix-vector form as 

A, V,     —    B1+1V1+1, 1,2,3,...,N-1     , (B.6) 

"■N VN      ~     ^ VN+1        > (B.7) 
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where Aj and Bj+i are 6x6 matrices describing the boundary conditions at the 
lower surface of the i& layer and the upper surface of the (i+1)^ layer, 
respectively, and C is a 6x3 matrix describing the boundary conditions at the 
surface of the Biot half-space. 

Applying the coordinate system described in the paragraph following 
Eq. (A. 18), the matrices for the ß layer, Aj and Bj, with layer thickness h-h are 
related by 

A,   =   B,D,     , (B.8) 

where 

D,   = 

r
e"ul>i 0 0 0 0 0 

0 <?'■'* "■ 0 0 0 0 
0 0 <?•■'"* 0 0 0 
0 0 0 e-^K 0 0 
0 0 0 0 g-lhi", 0 
o 0 0 0 0 <?-"»"■• 

(B.9) 

and In, hi, and /s/- are the wave numbers of the Biot fast, slow, and shear waves, 
respectively. Inserting Eq. (B.8) into Eq. (B.6), and rearranging terms, yields 

v,    =   D-'B-'B^v,,,,      i = l,2,3,...,N-l     . (B.10) 

Applying this recursively, we have 

i»-i ▼i = DT1 BI 
J-2 

BNvN (B.11) 

Inserting Eqs. (B.7) and (B.8) gives 

-1  D-l v, = DT Bi fl^B-1) 
j-2   V ' 

CvN+1 (B.12) 
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Consider the matrix 

P  = 

(\ 0   0   0   0 0} 
0 10   0   0 0 

0 0   10   0 0 

0 0   0   10 0 

(B.13) 

Note that right-multiplying this matrix by any 6x6 matrix truncates the bottom two 
rows of the 6x6 matrix. Thus, if the rows of B1f each of which corresponds to 
one of Eqs. (A.60) - (A.65), are ordered in the same sequence as those 
equations, then the 4x6 matrix PBi describes the four boundary conditions at 
the fluid/Biot interface of the first sediment layer. Hence, the boundary 

conditions at the fluid/Biot interface can be written as 

flM + PB,^ (B.14) 

where R is the reflection coefficient, M is a 4x1 matrix depending solely on the 
fluid properties, and b is a four-vector which also depends solely on the fluid 
properties. Inserting Eq. (B.12) into Eq. (B.13) gives 

ÄM + PSNCvN+1 =   b (B.15) 

where 

J=l 

(B.16) 

Note that Eq. (B.15) can be rewritten as 

(MIPSNC)x   =   b    , (B.17) 

where the 4x4 matrix (M I PSNC) consists of the 4x1 matrix M augmented with 
the 4x3 matrix PSNC, and 
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X    = 

R   \ 

B+sN+l 
(B.18) 

Thus, the problem of Appendix A can be solved quite simply and efficiently by 
forming the 4x4 matrix (M I PSNC) and then solving for x in Eq. (B.19). When 
compared to the original (6/V+4)x(6A/+4) banded matrix algorithm, with 
N = 500, this method consistently produced the same results to 14 out of 16 
significant figures, but with a time reduction of nearly two orders of magnitude. 
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APPENDIX   C 
CONVERSION  FROM  ONE- TO  THREE-DIMENSIONAL 

SCATTERING   STRENGTH 
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The experimentally measured scattering at the water-sediment interface, 
such as the results shown by Nolle et al., is a three-dimensional process, in 
which energy is scattered within a hemispherical sector of 2rc steradians, and 

the scattered intensity decreases with distance due to spreading losses. The 
simulations performed in this study are one-dimensional, where the scattered 
energy is directed back to the source of the incident wave and there is no 
spreading loss. In order to make quantitative comparisons between simulation 
and experiment, it is necessary to derive a relationship between the two 
processes. 

The output of the one-dimensional simulation is essentially the reflected 
plane wave signal from the sediment interface. The coherent part is identically 
the reflection coefficient, and the random part may be considered as the 
scattered component. They are approximately equal to the reflection coefficient 
at normal incidence, that can be experimentally measured using a real source 
and receiver, after properly accounting for the spreading loss. The reflection 
equation is as follows: Let SL be the source level of an acoustic source incident 
normally on a sediment surface. Let Ri_c and Ru be the coherent and random 
parts of the reflected signal. Let both source and receiver be at a distance r from 
the sediment surface. The coherent Rc and random Rr parts of the reflection 
coefficient amplitude, in decibels, are given by 

Rc = RLC - SL + 20 log(2/) + 2ar   , (C.1) 

Rr = Ru- - SL + 20 log(2/) + 2ar   , (C.2) 

where a is the absorption coefficient. 

When computed as backscattering strength, the corresponding coherent 
and random components are defined as follows. 

Sc = RLC -SL +40 log(/) + 2ar -10 \og(A)    , (C.3) 

Sr= RLr - SL + 40 log(A) + 2ar -10 \og{A)    , (C.4) 

where A is the insonified area. 
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Subtracting Eqs.(C1) and (C.2) from (C.3) and (C.4), the difference between 
the reflected levels generated by the one-dimensional simulation, and the 
scattered strengths measured in the laboratory, is given by 

Re - Sc = Rr - Sr = 20 log(2) + 10 \og(A) -20 log(/)    .     (C.5) 

The insonified area is defined by the beamwidth of the combined projector- 
receiver combination. Let us define the beamwidth 6 such that 

A= (6t)2   . (C.6) 

Then, the conversion from one- to three-dimensional scattering strength is 

expressible in terms of the beamwidth only, 

Rc - Sc = Rr - Sr = 20log(2) + 10log(<£)   . (C.7) 

From the measurement of reflection loss (-11 dB) and the peak of 
backscattering strength plot in Fig. 23 of Nolle et al., the value of Rc - Sc for 
their experimental apparatus, at 1 MHz, is found to be 

Rc  - Sc    = -11-22 = -33dB    . (C.8) 

Substituting into Eq. (C.7), the effective system half-beam width at 1 MHz is 
found to be 

6 = 0.011 radians   . (C.9) 

An approximate expression for the combined -3 dB beamwidth of source and 
receiver is given as follows. 

sin(0)V2 =0.443 A/D   , (C.10) 

where X is the acoustic wavelength and Dthe diameter of the aperture, and the 

</2 factor accounts for the cumulative effect of the projector and receiver 

apertures. 

48 



As a check, substituting from Eq. (C.9) into (C.10), it is found that the aperture of 
both source and receiver must have been approximately 4 cm, which is 
consistent with the stated transducer diameter of 1.5 in. used in the experiment. 

For narrow beams, the beamwidth is inversely proportional to the 
frequency; therefore, the conversion from one- to three-dimensional scattering 
strength at 500 kHz is estimated to be 

Rc - Sc= -33 dB + 10 log(4) = -27 dB    . 
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